Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications

نویسندگان

  • Sijia Liu
  • Jie Chen
  • Pin-Yu Chen
  • Alfred O. Hero
چکیده

In this paper, we design and analyze a new zeroth-order online algorithm, namely, the zeroth-order online alternating direction method of multipliers (ZOO-ADMM), which enjoys dual advantages of being gradient-free operation and employing the ADMM to accommodate complex structured regularizers. Compared to the first-order gradient-based online algorithm, we show that ZOO-ADMM requires √ m times more iterations, leading to a convergence rate of O( √ m/ √ T ), where m is the number of optimization variables, and T is the number of iterations. To accelerate ZOO-ADMM, we propose two minibatch strategies: gradient sample averaging and observation averaging, resulting in an improved convergence rate of O( √ 1 + q−1m/ √ T ), where q is the minibatch size. In addition to convergence analysis, we also demonstrate ZOO-ADMM to applications in signal processing, statistics, and machine learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Hankel Matrix Rank Minimization with Applications to System Identification and Realization

We introduce a flexible optimization framework for nuclear norm minimization of matrices with linear structure, including Hankel, Toeplitz and moment structures, and catalog applications from diverse fields under this framework. We discuss various first-order methods for solving the resulting optimization problem, including alternating direction methods of multipliers, proximal point algorithms...

متن کامل

A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers

We study preconditioned algorithms of alternating direction method of multipliers type for non-smooth optimization problems. The alternating direction method of multipliers is a popular first-order method for general constrained optimization problems. However, one of its drawbacks is the need to solve implicit subproblems. In various applications, these subproblems are either easily solvable or...

متن کامل

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions

In this paper, we establish the convergence properties for a majorized alternating direction method of multipliers for linearly constrained convex optimization problems,whose objectives contain coupled functions.Our convergence analysis relies on the generalized Mean-Value Theorem, which plays an important role to properly control the cross terms due to the presence of coupled objective functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07804  شماره 

صفحات  -

تاریخ انتشار 2017